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Recently we solved, via discrete numerical grids, the Ramakrishna-Yossouff density-functional theory equa-
tions for the freezing transition and obtained an intricate phase diagram of hard-sphere mixtures. Even though
such methods provide more variational freedom than basis-set methods, we found that the thermodynamic
guantities were sensitive to the spacing of numerical grids employed and observed numerically induced false
minima. Dasgupta and Valls have commented that these false minima were due to ouk-spacd methods
and, hence, their early works based on a fulgpace approach are qualitatively correct, despite also being
sensitive to the mesh granularity. Here, we clarify the issues of achieving correct thermodynamic limit from
grid-based methods and respond to their Comment, concluding-gpetce calculations using coarse meshes
may provide correct thermodynamic quantitiesly by extrapolatiopnand thus their previous work should be
called into question. In general, both methokispace orr-space, suffer from grid-induced problems.
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In our recent paper, Valera, Pinski, and JohnédRJ [1]  mogeneous state with densip, and the inhomogeneous
found solutions to the Ramakrishna-Yosso(Rf) density-  state with density(r) is approximated by
functional theory(DFT) equations describing the freezing
transition of hard spherd®]. These solutions were gener- R R )
ated using a discrete mesh and parts of the calculations were SAQ = j dri{p(r)In[p(r)/po]— (p(r))— po)}
done using a Fourier transfortne., k space. Our work in-
cluded a careful study of the effects due to the granularity of 1 ... . R
the meshes employd@]. We found significant shifts in the - EJ f dridriC(rij)(p(ri) = po) (p(rj) — po),
minima in the grand-potential difference between the liquid
and solid phases as a function of this granularity. In addition, (1)
for relatively finely spaced meshes, we found numerically
induced false minima. The main conclusion in our paper wasvherec(r) is the direct correlation function anglis related
that the granularity of the mesh influenced the accuracy ofo the inverse temperature. In particular, the freezing point is
calculations of thermodynamic functions. We then added thatlefined when an inhomogeneous density is found that gives a
this mesh sensitivity “casts doubt” on the previous work of vanishing grand-potential difference, such that any density
Dasgupta and Vall§4,5] who used rather coarse discrete fluctuation produces a positive contribution to this differ-
meshes, albeit their calculations were done entirely in reaénce, and, in addition, the pressure difference is zero. To
space. solve for this inhomogeneous density a numerical method
In response, Dasgupta and ValBV) have taken issue must be employed, which, by its very nature, is approximate.
with our paper and have written a Commé#fi to defend  Both the groupsDV and VPJ use a mesh-based approach to
their previous results as being physical even though thgolve these equations, as compared to basitesgt Gauss-
meshes employed were rather coarse. Before addressing tize and plane-wayemethods that have been employed pre-
DV comments, we make several general and salient points teiously. Mesh-based approaches are less restrictive and more
clarify and delineate the key issues. Afterwards we attempt toobust[1]. However, the continuum limit of discrete numeri-
enumerate specific items to help resolving the apparent coreal solutions may not provide an accurate representation of
troversy. We conclude that one must understand the effects dfie thermodynamics as expressed in &d.
the parameters introduced by the numerical method em- In a broader context, discrete numerical methods for solv-
ployed and be cautious in extrapolating to the continuum oing many physical and mathematical equations suffer from
thermodynamic limit. having different, and potentially incorrect, solutions when
The main issue to keep clear is that both the groups areompared to the continuum limit. It is well known in lattice
interested in calculating physical properties to describe freezgauge theories, for example, that elements of the underlying
ing based on calculations of the same thermodynamic quarattice manifest themselves in nonphysical behavior. Also,
tities within the same theoretical framework. The key equanotably, the rich structure of the standard logistic map of
tion to be solved is the classical DFT description of freezingchaos theory is lost if one considers the differential equation
based on RY expansion of the grand potentZdl The dif-  that results by taking the continuum limit of the relevant
ference in the grand potentiAlQ) between the reference ho- difference equation.
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For thermodynamic solutions, the continuum limit is re- 1 | S E— T I — T
quired. Solutions of the numerical equations depend upon the
coarseness of the grid-meshing employed, as we originally
identified[3]. Both DV and VPJ assume that the continuum Waisman
limit will produce correct thermodynamic solutions of Eq.

(1). The expectation is that, with an appropriately fine mesh,
convergence will be found for the thermodynamic properties 4~
of interest. In other words, the “correct” physical solution is |"
identified independent of the artifacts introduced by using a
grid. In our papef3], we identified numerically false solu-
tions for mesh spacings larger than the widths of the physica
density profiles(i.e., larger than the Lindemann paramgter ! Percus-Yevick
Indeed, with fine enough grids, the physical and numerically
induced solutions were apparent. The main controversy be
tween DV and VPJ is embedded in the fact that both the
groups have solutions that are dependent on the granularit
of the mesh, albeit differently. Thus, both groups must ensure
that their solutions are independent of this granularity to ob- -3 A WU T N T
tain physical thermodynamic values. VPJ verified the con- 100 102 104 1.06 1.08 110
vergence of the thermodynamic results on granularity of the r/dys

mesh[3] and used such method to investigate the phase dia-

gram C;:c %Inal;y ml(;(tu'rffl]l.n d H ved plotted as a function of scaled distaneédys for a densityn*
Methods, based either kispace and space, when solve =0.936. The functionC(r) is the volume average df(r); the

with a discrete mesh have advantages and drawbacks. %Iume used i$5® where5=0.04d,,5. The solid line represents the

stated above, both the approaches provide more variation@jaisman parametrizatici®], while the dashed line is the analytic
freedom than basis-set methods. Thgpace method is in-  percus-Yevick solutiofig].

trinsically faster than the-space method i€(r) is spatially
extended(due to the use of fast Fourier transfopmbn ad-
dition, for the k-space method, because of the underlyin
plane-wave basis, the effects from discontinuities arisi
from a mesh are minimized in the second term of @4, in
contrast tor space where some other method for smearin
c(r) has to be used. The major drawback of thepace
method is that there can be an associated Gibbs’ pheno
enon for representing the discontinuitiescifr), as pointed
out in the Comment of DV.

In many cases, the Percus-Yevi@kY) approximation for
c(r) is used. Within this approximatiorg(r) is zero for

n*=0.936

FIG. 1. The direct correlation function for hard sphe@(s) is

However, DV then, without further support, conclude that
ngtheir previously reported-space solutions are not potentially
9 error, even though those solutions are based on coarse

rids.

That this reasoning is logically faulty can be seen as fol-

lows. First, the sensitivity of the thermodynamic quantities to
e coarseness of the grid exists in both thepace and
k-space methods, a point on which both groups apparently
agree. Second, the behavior of such quantities calculated
with fine grids, and the existen¢er not of false secondary
. . . . minima, is a separate issue. In fact, as noted above, the con-
distances t_)eyond the hard-sphere diamdigy with a dis- tinuum (thermodynamig limit is the only one of physical
crete step irc(r) atdys. Dasgupta and Valls’ comment at- interest.
tributes the numerically false solutions found in our paper to Now, consider calculations using coarse meshes that are

the overshoot irt(r) caused by the use of a discrete Fourier,[ypical of those used by DV. As we have sho@d], the

transform. Such an overshoot is typical of a Gibbs’ phenomy anq potential difference has significant variation of its

enon arising from the transform of the steplike functional inima as the mesh coarsens. In their comnié&l DV
behavior inc(r). Ther-space solutions using the PY-based ggree that there is a quantitative change, with the location of
c(r) indeed, as DV have verified, do not show the additionakhe minimum in the grand-potential difference shifting from
false minimum found, using space, see Fig. 1 of the pre- | ~1 51d,,sto 1.5%,5. In addition, the values of the grand-
ceeding papei6]. Nonetheless, the-space solutions do suf- potential difference do not lie on a smooth curve when
fer from the use of discrete grids. The solutions found by DVviewed as a function of “lattice constant” of the inhomoge-
show sensitivity of thermodynamic functions to grid sizes, ameous density, see Fig. 1 of their commgsik In that plot,
we originally stated in our paper. the scatter in the-space-generated values are a result of the
Thus we agree with the finding of DV that our uselof interplay of the coarse mesh with the spatial variation(o}
space produces an effectieér) that is slightly positive at when evaluating the second term in E@). Clearly, the
distances beyond the hard-sphere diameter, contrary to thenoothing method for calculating(r) employed by DV
PY form. We also agree that the false minima we found aris¢Eq. (3) of their commen{6]] is insufficient to eliminate the
from this representation, but, as we concluded, with fineabove-mentioned scatter, which affects all thermodynamic
enough mesh the physical solutions are correctly identifiedquantities including the pressure. We believe that both the
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groups are in agreement on these points. In addition, anglue to thek-space method in and of itself. Hence, one must
free-energy landscape will be affected by such discontinuiemploy a finely spaced mesim eitherr or k space to obtain
ties in thermodynamic functions. accurate thermodynamic functions, which was the main mes-
We, now address what happens when refining the grid tgage of our original work3].
achieve the continuum limit. Ostensibly both groups were As DV stated in their commeni{6] for the r-space
using the PY approximation ta(r), which is identically = method, quantitative differences arise from coarsening the
zero for values ofr beyond the hard-sphere diameter. DV mesh, which is similar to what we had previously shasee
trace the existence of our false minima to thepace effec- Fig. 1 of Ref.[3]) for k-space results. They still need to
tive c(r) being slightly positive outside hard-sphere diametersubstantiate why they “believe” that their coarse-mesh solu-
(a Gibb’'s overshogt However, more accurate representa-tions are qualitatively correct, and are not dramatically af-
tions ofc(r) are also positive in this region. In paricular, we fected by mesh coarseness. In their comment, they could
plot in the accompanying figure the direct correlation in thehave addressed this issue by plotting the grand-potgatial
Percus-Yevick[ 8] approximation along with the better pa- pressurgdifference for several mesh spacings and including
rametrization by Waismaf9]. To approximate the “smear- the resultant mesh-dependent scatter, since in their comment
ing” in DV's r-space method, we average¢t) over a vol-  they describe such results for a range of granularities. How-
ume equal to that of one of their smaller elements. Theever, they chose not to do so.
comparison of this plot with that of DV in their Commei] To summarize, using either-space ork-space based
shows that fortuitously the Gibbs overshoot gives a shift ofmethods, the dependencies on the granularity of the mesh
almost identically the same form and magnitude as if onenust be understood and eliminated to obtain the correct ther-
had used a better approximationa¢r). Thus, more accu- modynamics, as we did so in our paper fdr-apace method
rate DFT calculations would necessarily produce similar nu{3]. Numerically induced false minima will occur when us-
merically induced false minima. Indeed, as DV show in Fig.ing more realistic forms of(r) in both,r-space and-space
1 of their commen[6], anr-space solution using suclcér) methods, as seen in calculations done by both gr¢8s.
(with nonzero positive weight beyond the hard-sphere diamAnd, finally, one should be careful in extrapolating results
etep does vyield the grid-sensitive false minimum that we obtained from such calculations to the thermodynamic limit,
described using B-space methoff3]. Such a false minimum a point in agreement with the sentiments in the last para-
must be considered as an artifact of the use of a mesh and ngtaph of Dagupta and Valls’ 1999 artid&].
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