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Reply to ‘‘Comment on ‘Classical density functional theory of freezing in simple fluids:
Numerically induced false solutions’ ’’
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Recently we solved, via discrete numerical grids, the Ramakrishna-Yossouff density-functional theory equa-
tions for the freezing transition and obtained an intricate phase diagram of hard-sphere mixtures. Even though
such methods provide more variational freedom than basis-set methods, we found that the thermodynamic
quantities were sensitive to the spacing of numerical grids employed and observed numerically induced false
minima. Dasgupta and Valls have commented that these false minima were due to our use ofk-space methods
and, hence, their early works based on a fullyr-space approach are qualitatively correct, despite also being
sensitive to the mesh granularity. Here, we clarify the issues of achieving correct thermodynamic limit from
grid-based methods and respond to their Comment, concluding thatr-space calculations using coarse meshes
may provide correct thermodynamic quantities~only by extrapolation! and thus their previous work should be
called into question. In general, both methods,k-space orr-space, suffer from grid-induced problems.
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In our recent paper, Valera, Pinski, and Johnson~VPJ! @1#
found solutions to the Ramakrishna-Yossouff~RY! density-
functional theory~DFT! equations describing the freezin
transition of hard spheres@2#. These solutions were gene
ated using a discrete mesh and parts of the calculations
done using a Fourier transform~i.e., k space!. Our work in-
cluded a careful study of the effects due to the granularity
the meshes employed@3#. We found significant shifts in the
minima in the grand-potential difference between the liq
and solid phases as a function of this granularity. In additi
for relatively finely spaced meshes, we found numerica
induced false minima. The main conclusion in our paper w
that the granularity of the mesh influenced the accuracy
calculations of thermodynamic functions. We then added
this mesh sensitivity ‘‘casts doubt’’ on the previous work
Dasgupta and Valls@4,5# who used rather coarse discre
meshes, albeit their calculations were done entirely in r
space.

In response, Dasgupta and Valls~DV! have taken issue
with our paper and have written a Comment@6# to defend
their previous results as being physical even though
meshes employed were rather coarse. Before addressin
DV comments, we make several general and salient poin
clarify and delineate the key issues. Afterwards we attemp
enumerate specific items to help resolving the apparent
troversy. We conclude that one must understand the effec
the parameters introduced by the numerical method
ployed and be cautious in extrapolating to the continuum
thermodynamic limit.

The main issue to keep clear is that both the groups
interested in calculating physical properties to describe fre
ing based on calculations of the same thermodynamic qu
tities within the same theoretical framework. The key eq
tion to be solved is the classical DFT description of freez
based on RY expansion of the grand potential@2#. The dif-
ference in the grand potentialDV between the reference ho
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mogeneous state with densityro and the inhomogeneou
state with densityr(rW) is approximated by

bDV5E drW i$r~rW i !ln@r~rW i !/ro#2„r~rW i !2ro…%

2
1

2E E drW idrW jC~rW i j !~r~rW i !2ro!„r~rW j !2ro…,

~1!

wherec(r ) is the direct correlation function andb is related
to the inverse temperature. In particular, the freezing poin
defined when an inhomogeneous density is found that giv
vanishing grand-potential difference, such that any den
fluctuation produces a positive contribution to this diffe
ence, and, in addition, the pressure difference is zero.
solve for this inhomogeneous density a numerical meth
must be employed, which, by its very nature, is approxima
Both the groups~DV and VPJ! use a mesh-based approach
solve these equations, as compared to basis-set~e.g., Gauss-
ian and plane-wave! methods that have been employed p
viously. Mesh-based approaches are less restrictive and m
robust@1#. However, the continuum limit of discrete numer
cal solutions may not provide an accurate representatio
the thermodynamics as expressed in Eq.~1!.

In a broader context, discrete numerical methods for so
ing many physical and mathematical equations suffer fr
having different, and potentially incorrect, solutions wh
compared to the continuum limit. It is well known in lattic
gauge theories, for example, that elements of the underly
lattice manifest themselves in nonphysical behavior. Al
notably, the rich structure of the standard logistic map
chaos theory is lost if one considers the differential equat
that results by taking the continuum limit of the releva
difference equation.
©2003 The American Physical Society02-1
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For thermodynamic solutions, the continuum limit is r
quired. Solutions of the numerical equations depend upon
coarseness of the grid-meshing employed, as we origin
identified @3#. Both DV and VPJ assume that the continuu
limit will produce correct thermodynamic solutions of E
~1!. The expectation is that, with an appropriately fine me
convergence will be found for the thermodynamic propert
of interest. In other words, the ‘‘correct’’ physical solution
identified independent of the artifacts introduced by usin
grid. In our paper@3#, we identified numerically false solu
tions for mesh spacings larger than the widths of the phys
density profiles~i.e., larger than the Lindemann paramete!.
Indeed, with fine enough grids, the physical and numeric
induced solutions were apparent. The main controversy
tween DV and VPJ is embedded in the fact that both
groups have solutions that are dependent on the granul
of the mesh, albeit differently. Thus, both groups must ens
that their solutions are independent of this granularity to
tain physical thermodynamic values. VPJ verified the c
vergence of the thermodynamic results on granularity of
mesh@3# and used such method to investigate the phase
gram of binary mixtures@1#.

Methods, based either ink space andr space, when solved
with a discrete mesh have advantages and drawbacks
stated above, both the approaches provide more variati
freedom than basis-set methods. Thek-space method is in
trinsically faster than ther-space method ifc(r ) is spatially
extended~due to the use of fast Fourier transforms!. In ad-
dition, for the k-space method, because of the underly
plane-wave basis, the effects from discontinuities aris
from a mesh are minimized in the second term of Eq.~1!, in
contrast tor space where some other method for smear
c(r ) has to be used. The major drawback of thek-space
method is that there can be an associated Gibbs’ phen
enon for representing the discontinuities inc(r ), as pointed
out in the Comment of DV.

In many cases, the Percus-Yevick~PY! approximation for
c(r ) is used. Within this approximation,c(r ) is zero for
distances beyond the hard-sphere diameterdHS with a dis-
crete step inc(r ) at dHS . Dasgupta and Valls’ comment a
tributes the numerically false solutions found in our pape
the overshoot inc(r ) caused by the use of a discrete Four
transform. Such an overshoot is typical of a Gibbs’ pheno
enon arising from the transform of the steplike function
behavior inc(r ). The r-space solutions using the PY-bas
c(r ) indeed, as DV have verified, do not show the additio
false minimum found, usingk space, see Fig. 1 of the pre
ceeding paper@6#. Nonetheless, ther-space solutions do suf
fer from the use of discrete grids. The solutions found by D
show sensitivity of thermodynamic functions to grid sizes,
we originally stated in our paper.

Thus we agree with the finding of DV that our use ofk
space produces an effectivec(r ) that is slightly positive at
distances beyond the hard-sphere diameter, contrary to
PY form. We also agree that the false minima we found a
from this representation, but, as we concluded, with fi
enough mesh the physical solutions are correctly identifi
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However, DV then, without further support, conclude th
their previously reportedr-space solutions are not potential
in error, even though those solutions are based on co
grids.

That this reasoning is logically faulty can be seen as f
lows. First, the sensitivity of the thermodynamic quantities
the coarseness of the grid exists in both ther-space and
k-space methods, a point on which both groups appare
agree. Second, the behavior of such quantities calcul
with fine grids, and the existence~or not! of false secondary
minima, is a separate issue. In fact, as noted above, the
tinuum ~thermodynamic! limit is the only one of physical
interest.

Now, consider calculations using coarse meshes that
typical of those used by DV. As we have shown@3#, the
grand potential difference has significant variation of
minima as the mesh coarsens. In their comment@6#, DV
agree that there is a quantitative change, with the locatio
the minimum in the grand-potential difference shifting fro
L;1.51dHS to 1.55dHS . In addition, the values of the grand
potential difference do not lie on a smooth curve wh
viewed as a function of ‘‘lattice constant’’ of the inhomog
neous density, see Fig. 1 of their comment@6#. In that plot,
the scatter in ther-space-generated values are a result of
interplay of the coarse mesh with the spatial variation ofc(r )
when evaluating the second term in Eq.~1!. Clearly, the
smoothing method for calculatingc(r ) employed by DV
@Eq. ~3! of their comment@6## is insufficient to eliminate the
above-mentioned scatter, which affects all thermodyna
quantities including the pressure. We believe that both

FIG. 1. The direct correlation function for hard spheresC̄(r ) is
plotted as a function of scaled distance,r /dHS for a densityn*
50.936. The functionC̄(r ) is the volume average ofc(r ); the
volume used isd3 whered50.04dHS . The solid line represents th
Waisman parametrization@9#, while the dashed line is the analyti
Percus-Yevick solution@8#.
2-2
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groups are in agreement on these points. In addition,
free-energy landscape will be affected by such discontin
ties in thermodynamic functions.

We, now address what happens when refining the grid
achieve the continuum limit. Ostensibly both groups we
using the PY approximation toc(r ), which is identically
zero for values ofr beyond the hard-sphere diameter. D
trace the existence of our false minima to thek-space effec-
tive c(r ) being slightly positive outside hard-sphere diame
~a Gibb’s overshoot!. However, more accurate represen
tions ofc(r ) are also positive in this region. In paricular, w
plot in the accompanying figure the direct correlation in t
Percus-Yevick@8# approximation along with the better pa
rametrization by Waisman@9#. To approximate the ‘‘smear
ing’’ in DV’s r-space method, we averagedc(r ) over a vol-
ume equal to that of one of their smaller elements. T
comparison of this plot with that of DV in their Comment@6#
shows that fortuitously the Gibbs overshoot gives a shift
almost identically the same form and magnitude as if o
had used a better approximation toc(r ). Thus, more accu-
rate DFT calculations would necessarily produce similar
merically induced false minima. Indeed, as DV show in F
1 of their comment@6#, anr-space solution using such ac(r )
~with nonzero positive weight beyond the hard-sphere dia
eter! does yield the grid-sensitive false minimum that w
described using ak-space method@3#. Such a false minimum
must be considered as an artifact of the use of a mesh an
m
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due to thek-space method in and of itself. Hence, one m
employ a finely spaced mesh~in eitherr or k space! to obtain
accurate thermodynamic functions, which was the main m
sage of our original work@3#.

As DV stated in their comment@6# for the r-space
method, quantitative differences arise from coarsening
mesh, which is similar to what we had previously shown~see
Fig. 1 of Ref. @3#! for k-space results. They still need t
substantiate why they ‘‘believe’’ that their coarse-mesh so
tions are qualitatively correct, and are not dramatically
fected by mesh coarseness. In their comment, they co
have addressed this issue by plotting the grand-potential~and
pressure! difference for several mesh spacings and includ
the resultant mesh-dependent scatter, since in their comm
they describe such results for a range of granularities. H
ever, they chose not to do so.

To summarize, using eitherr-space ork-space based
methods, the dependencies on the granularity of the m
must be understood and eliminated to obtain the correct t
modynamics, as we did so in our paper for ak-space method
@3#. Numerically induced false minima will occur when u
ing more realistic forms ofc(r ) in both,r-space andk-space
methods, as seen in calculations done by both groups@3,6#.
And, finally, one should be careful in extrapolating resu
obtained from such calculations to the thermodynamic lim
a point in agreement with the sentiments in the last pa
graph of Dagupta and Valls’ 1999 article@7#.
v. E
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